Symbol Emergence in Robotics and Unsupervised Machine Learning for Language Acquisition

Tadahiro Taniguchi College of Information Science & Engineering Ritsumeikan University (Visiting associate professor, Imperial College London)

Japan-UK Robotics and Artificial Intelligence Seminar 2016 The Embassy of Japan, London 18th, February, 2016

Computational Understanding of Mental Development From Behavioral Learning to Language Acquisition

- A human child acquires many physical skills, concepts, and knowledge, including language, through physical and social interaction with his/her environment.
- How do we become able to communicate via symbols?
- We'd like to obtain an understanding of the computational process of mental development and language acquisition.

Develop robotic and computational models to better understand the original

Symbol Emergence in Robotics

Symbol Emergence in Robotics

Tadahiro Taniguchi, Takayuki Nagai, Tomoaki Nakamura, Naoto Iwahashi, Tetsuya Ogata, Hideki Asoh, Symbol Emergence in Robotics: A Survey, (preprint arXiv:1509.08973) (accepted to Advanced Robotics)

Unsupervised Machine Learning for Language Acquisition by a Robot

The problems are mutually dependent.

- How can the robot come to [Taniguchi et al. 2015]
 - 1.know a set of phonemes?
 - 2.achieve accurate speech recognition performance?
 - 3.find word segments in speech signals?
 - 4.relate words to objects/events? (meanings / correspondence)

A language learner, i.e., an infant or a robot, has to solve the problems simultaneously.

This must be Godaya!!!

Double articulation ^{1. NPB-DAA} [Taniguchi et al. 2015] structure in semiotic data

- Semiotic time-series data often has double articulation
 - Speech signal is a continuous and high-dimensional time-series.
 - Spoken sentence is considered as a sequence of phonemes.
 - The phonemes are grouped into words, and people give them meanings.

Nonparametric Bayesian Double [Taniguchi et al. 2015] Articulation Analyzer (NPB-DAA) [Taniguchi '15]

- An integrative generative model (HDP-HLM) that combines language and acoustic models simultaneously.
- The model is applied to continuous artificial Japanese vowel speech signals.
- It outperformed baseline speech recognition systembased method.

Method	Letter ARI	Word ARI	AM	LM
NPB-DAA (MAP)	0.599	0.497		
NPB-DAA	0.574	0.385		
Conventional DAA	0.584	0.072		
Julius (phoneme dictionary + NPYLM)	0.483	0.315	~	
Julius (phoneme dictionary + latticelm)	0.524	0.426	~	
Julius (monophone + word dictionary)	0.565	0.548	~	~
Julius (triphone + word dictionary)	0.516	0.636	1	~

Tadahiro Taniguchi, Ryo Nakashima, Shogo Nagasaka, Nonparametric Bayesian Double Articulation Analyzer for Direct Language Acquisition from Continuous Speech Signals, arXiv:1506.06646

G

Summary & Open problems

- ✓ Symbol Emergence in Robotics is a constructive approach towards emergent symbol systems.
- Unsupervised machine learning for language acquisition by a robot is now becoming a (partially) solvable problem recently.
- ✓ Nonparametric Bayesian approach is effective for modeling language acquisition process. (Even though deep learning is booming these days.)

Open problems

- □ How can a robot learn syntax?
- How can a robot learn pragmatics?
- How can a robot understand metaphor?
- □ How can a robot use natural language in planning of their behavior?
- Is human-robot communication and collaboration possible using such a language learned in an unsupervised manner?
- □ and so on.

Information

Special Thanks

- Ritsumeikan University
 - R. Nakashima, S. Nagasaka, A. Taniguchi,
- UEC
 - T. Nagai, T. Nakamura, T. Araki, Y. Ando
- DENSO co.
 - T. Bando, K. Takenaka, K. Hitomi
- Okayama Pref. Univ.
 - N. Iwahashi
- Kyoto University
 - Tetsuo Sawaragi

Visit http://www.tanichu.com/

Home

This is tanichu's (Tadahiro Taniguchi's) personal web site

Tadahiro Taniguchi, Associate professor, PhD Eng. Department of Human & Computer Intelligence College of Rtsumeikan University

email: taniguchi@ci.ristumei.ac.jp

Twitter: @tanichu

Facebook

10